Artikel

A two-population mortality model to assess longevity basis risk

Index-based hedging solutions are used to transfer the longevity risk to the capital markets. However, mismatches between the liability of the hedger and the hedging instrument cause longevity basis risk. Therefore, an appropriate two-population model to measure and assess longevity basis risk is required. In this paper, we aim to construct a two-population mortality model to provide an effective hedge against the basis risk. The reference population is modelled by using the Lee-Carter model with the renewal process and exponential jumps, and the dynamics of the book population are specified. The analysis based on the U.K. mortality data indicate that the proposed model for the reference population and the common age effect model for the book population provide a better fit compared to the other models considered in the paper. Different two-population models are used to investigate the impact of sampling risk on the index-based hedge, as well as to analyse the risk reduction regarding hedge effectiveness. The results show that the proposed model provides a significant risk reduction when mortality jumps and sampling risk are taken into account.

Language
Englisch

Bibliographic citation
Journal: Risks ; ISSN: 2227-9091 ; Volume: 9 ; Year: 2021 ; Issue: 2 ; Pages: 1-19 ; Basel: MDPI

Classification
Wirtschaft
Subject
longevity basis risk
mortality jumps
sampling risk
two-population mortality model

Event
Geistige Schöpfung
(who)
Özen, Selin
Şahin, Şule
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2021

DOI
doi:10.3390/risks9020044
Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Özen, Selin
  • Şahin, Şule
  • MDPI

Time of origin

  • 2021

Other Objects (12)