Arbeitspapier

Finding relevant variables in sparse Bayesian factor models: Economic applications and simulation results

This paper considers factor estimation from heterogenous data, where some of the variables are noisy and only weakly informative for the factors. To identify the irrelevant variables, we search for zero rows in the loadings matrix of the factor model. To sharply separate these irrelevant variables from the informative ones, we choose a Bayesian framework for factor estimation with sparse priors on the loadings matrix. The choice of a sparse prior is an extension to the existing macroeconomic literature, which predominantly uses normal priors on the loadings. Simulations show that the sparse factor model can well detect various degrees of sparsity in the data, and how irrelevant variables can be identified. Empirical applications to a large multi-country GDP dataset and disaggregated CPI inflation data for the US reveal that sparsity matters a lot, as the majority of the variables in both datasets are irrelevant for factor estimation.

ISBN
978-3-86558-858-6
Sprache
Englisch

Erschienen in
Series: Bundesbank Discussion Paper ; No. 29/2012

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Classification Methods; Cluster Analysis; Principal Components; Factor Models
Bayesian Analysis: General
Thema
factor models
variable selection
sparse priors

Ereignis
Geistige Schöpfung
(wer)
Kaufmann, Sylvia
Schumacher, Christian
Ereignis
Veröffentlichung
(wer)
Deutsche Bundesbank
(wo)
Frankfurt a. M.
(wann)
2012

Handle
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Kaufmann, Sylvia
  • Schumacher, Christian
  • Deutsche Bundesbank

Entstanden

  • 2012

Ähnliche Objekte (12)