The valuation pairing on an upper cluster algebra

Abstract: It is known that many (upper) cluster algebras are not unique factorization domains. We exhibit the local factorization properties with respect to any given seed t: any non-zero element in a full rank upper cluster algebra can be uniquely written as the product of a cluster monomial in t and another element not divisible by the cluster variables in t. Our approach is based on introducing the valuation pairing on an upper cluster algebra: it counts the maximal multiplicity of a cluster variable among the factorizations of any given element. We apply the valuation pairing to obtain many results concerning factoriality, d-vectors, F-polynomials and the combinatorics of cluster Poisson variables. In particular, we obtain that full rank and primitive upper cluster algebras are factorial; an explanation of d-vectors using valuation pairing; a cluster monomial in non-initial cluster variables is determined by its F-polynomial; the F-polynomials of non-initial cluster variables are irreducible; and the cluster Poisson variables parametrize the exchange pairs of the corresponding upper cluster algebra.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
The valuation pairing on an upper cluster algebra ; volume:2024 ; number:806 ; year:2024 ; pages:71-114 ; extent:44
Journal für die reine und angewandte Mathematik ; 2024, Heft 806 (2024), 71-114 (gesamt 44)

Creator
Cao, Peigen
Keller, Bernhard
Qin, Fan

DOI
10.1515/crelle-2023-0080
URN
urn:nbn:de:101:1-2024010813024940501274
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:33 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Cao, Peigen
  • Keller, Bernhard
  • Qin, Fan

Other Objects (12)