Artikel
Machine learning for financial forecasting, planning and analysis: recent developments and pitfalls
This article is an introduction to machine learning for financial forecasting, planning and analysis (FP&A). Machine learning appears well suited to support FP&A with the highly automated extraction of information from large amounts of data. However, because most traditional machine learning techniques focus on forecasting (prediction), we discuss the particular care that must be taken to avoid the pitfalls of using them for planning and resource allocation (causal inference). While the naive application of machine learning usually fails in this context, the recently developed double machine learning framework can address causal questions of interest. We review the current literature on machine learning in FP&A and illustrate in a simulation study how machine learning can be used for both forecasting and planning. We also investigate how forecasting and planning improve as the number of data points increases.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Digital Finance ; ISSN: 2524-6186 ; Volume: 4 ; Year: 2021 ; Issue: 1 ; Pages: 63-88 ; Cham: Springer International Publishing
- Klassifikation
-
Wirtschaft
Capital Budgeting; Fixed Investment and Inventory Studies; Capacity
Forecasting Models; Simulation Methods
Large Data Sets: Modeling and Analysis
- Thema
-
Financial planning
Machine learning
Forecasting
Causal machine learning
Big data
Double machine learning
Primary G17
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Wasserbacher, Helmut
Spindler, Martin
- Ereignis
-
Veröffentlichung
- (wer)
-
Springer International Publishing
- (wo)
-
Cham
- (wann)
-
2021
- DOI
-
doi:10.1007/s42521-021-00046-2
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Wasserbacher, Helmut
- Spindler, Martin
- Springer International Publishing
Entstanden
- 2021