Artikel

Machine learning for financial forecasting, planning and analysis: recent developments and pitfalls

This article is an introduction to machine learning for financial forecasting, planning and analysis (FP&A). Machine learning appears well suited to support FP&A with the highly automated extraction of information from large amounts of data. However, because most traditional machine learning techniques focus on forecasting (prediction), we discuss the particular care that must be taken to avoid the pitfalls of using them for planning and resource allocation (causal inference). While the naive application of machine learning usually fails in this context, the recently developed double machine learning framework can address causal questions of interest. We review the current literature on machine learning in FP&A and illustrate in a simulation study how machine learning can be used for both forecasting and planning. We also investigate how forecasting and planning improve as the number of data points increases.

Sprache
Englisch

Erschienen in
Journal: Digital Finance ; ISSN: 2524-6186 ; Volume: 4 ; Year: 2021 ; Issue: 1 ; Pages: 63-88 ; Cham: Springer International Publishing

Klassifikation
Wirtschaft
Capital Budgeting; Fixed Investment and Inventory Studies; Capacity
Forecasting Models; Simulation Methods
Large Data Sets: Modeling and Analysis
Thema
Financial planning
Machine learning
Forecasting
Causal machine learning
Big data
Double machine learning
Primary G17

Ereignis
Geistige Schöpfung
(wer)
Wasserbacher, Helmut
Spindler, Martin
Ereignis
Veröffentlichung
(wer)
Springer International Publishing
(wo)
Cham
(wann)
2021

DOI
doi:10.1007/s42521-021-00046-2
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Wasserbacher, Helmut
  • Spindler, Martin
  • Springer International Publishing

Entstanden

  • 2021

Ähnliche Objekte (12)