A RAPID PIPELINE FOR PERIODIC INSPECTION AND MAINTENANCE OF ARCHITECTURAL SURFACES

Abstract. In recent years, literature is moving towards an optimization of the investigation phases, by implementing digital technologies for the acquisition, elaboration and interpretation of 2D/3D data, to assess the state of conservation of a building or its main components. Besides, digital image processing and artificial intelligence are progressively rationalizing the analysis of the collected data. Furthermore, easy common devices, like spherical cameras or smartphones, have been introduced for the virtual reconstruction and representation of architectural environments, with the purpose of assessing their morphology and conditions. However, there is still an absence of harmonized standard procedures. To address these issues, the paper proposes a rapid pipeline, involving easy-to-use devices and expeditious procedures, to remotely assess, quantify, and monitor the extension of surface decay of historical buildings. A workflow based on the use of 360° images and videogrammetry has been defined and tested on a representative case study, both for its cultural value and for its limited accessibility, demonstrating a great suitability to the topic.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
A RAPID PIPELINE FOR PERIODIC INSPECTION AND MAINTENANCE OF ARCHITECTURAL SURFACES ; volume:XLVIII-M-2-2023 ; year:2023 ; pages:621-628 ; extent:8
The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; XLVIII-M-2-2023 (2023), 621-628 (gesamt 8)

Urheber
Galantucci, R. A.
Lasorella, M.
De Fino, M.

DOI
10.5194/isprs-archives-XLVIII-M-2-2023-621-2023
URN
urn:nbn:de:101:1-2023062905083522591081
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:48 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Galantucci, R. A.
  • Lasorella, M.
  • De Fino, M.

Ähnliche Objekte (12)