Arbeitspapier

Inference on the maximal rank of time-varying covariance matrices using high-frequency data

We study the rank of the instantaneous or spot covariance matrix ΣX(t) of a multidimensional continuous semi-martingale X(t). Given highfrequency observations X(i/n), i = 0,...,n, we test the null hypothesis rank (ΣX(t)) <= r for all t against local alternatives where the average (r + 1)st eigenvalue is larger than some signal detection rate vn. A major problem is that the inherent averaging in local covariance statistics produces a bias that distorts the rank statistics. We show that the bias depends on the regularity and a spectral gap of ΣX(t).We establish explicit matrix perturbation and concentration results that provide non-asymptotic uniform critical values and optimal signal detection rates vn. This leads to a rank estimation method via sequential testing. For a class of stochastic volatility models, we determine data-driven critical values via normed p-variations of estimated local covariance matrices. The methods are illustrated by simulations and an application to high-frequency data of U.S. government bonds.

Sprache
Englisch

Erschienen in
Series: Discussion Paper ; No. 2021/14

Klassifikation
Wirtschaft
Thema
empirical covariance matrix
rank detection
signal detection rate
matrix concentration
eigenvalue perturbation
principal component analysis
factor model
term structure

Ereignis
Geistige Schöpfung
(wer)
Reiß, Markus
Winkelmann, Lars
Ereignis
Veröffentlichung
(wer)
Freie Universität Berlin, School of Business & Economics
(wo)
Berlin
(wann)
2021

DOI
doi:10.17169/refubium-32210
Handle
URN
urn:nbn:de:kobv:188-refubium-32485-6
Letzte Aktualisierung
10.03.2025, 11:45 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Reiß, Markus
  • Winkelmann, Lars
  • Freie Universität Berlin, School of Business & Economics

Entstanden

  • 2021

Ähnliche Objekte (12)