Arbeitspapier

Inference on the maximal rank of time-varying covariance matrices using high-frequency data

We study the rank of the instantaneous or spot covariance matrix ΣX(t) of a multidimensional continuous semi-martingale X(t). Given highfrequency observations X(i/n), i = 0,...,n, we test the null hypothesis rank (ΣX(t)) <= r for all t against local alternatives where the average (r + 1)st eigenvalue is larger than some signal detection rate vn. A major problem is that the inherent averaging in local covariance statistics produces a bias that distorts the rank statistics. We show that the bias depends on the regularity and a spectral gap of ΣX(t).We establish explicit matrix perturbation and concentration results that provide non-asymptotic uniform critical values and optimal signal detection rates vn. This leads to a rank estimation method via sequential testing. For a class of stochastic volatility models, we determine data-driven critical values via normed p-variations of estimated local covariance matrices. The methods are illustrated by simulations and an application to high-frequency data of U.S. government bonds.

Language
Englisch

Bibliographic citation
Series: Discussion Paper ; No. 2021/14

Classification
Wirtschaft
Subject
empirical covariance matrix
rank detection
signal detection rate
matrix concentration
eigenvalue perturbation
principal component analysis
factor model
term structure

Event
Geistige Schöpfung
(who)
Reiß, Markus
Winkelmann, Lars
Event
Veröffentlichung
(who)
Freie Universität Berlin, School of Business & Economics
(where)
Berlin
(when)
2021

DOI
doi:10.17169/refubium-32210
Handle
URN
urn:nbn:de:kobv:188-refubium-32485-6
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Reiß, Markus
  • Winkelmann, Lars
  • Freie Universität Berlin, School of Business & Economics

Time of origin

  • 2021

Other Objects (12)