Arbeitspapier
Inference on the maximal rank of time-varying covariance matrices using high-frequency data
We study the rank of the instantaneous or spot covariance matrix ΣX(t) of a multidimensional continuous semi-martingale X(t). Given highfrequency observations X(i/n), i = 0,...,n, we test the null hypothesis rank (ΣX(t)) <= r for all t against local alternatives where the average (r + 1)st eigenvalue is larger than some signal detection rate vn. A major problem is that the inherent averaging in local covariance statistics produces a bias that distorts the rank statistics. We show that the bias depends on the regularity and a spectral gap of ΣX(t).We establish explicit matrix perturbation and concentration results that provide non-asymptotic uniform critical values and optimal signal detection rates vn. This leads to a rank estimation method via sequential testing. For a class of stochastic volatility models, we determine data-driven critical values via normed p-variations of estimated local covariance matrices. The methods are illustrated by simulations and an application to high-frequency data of U.S. government bonds.
- Language
-
Englisch
- Bibliographic citation
-
Series: Discussion Paper ; No. 2021/14
- Classification
-
Wirtschaft
- Subject
-
empirical covariance matrix
rank detection
signal detection rate
matrix concentration
eigenvalue perturbation
principal component analysis
factor model
term structure
- Event
-
Geistige Schöpfung
- (who)
-
Reiß, Markus
Winkelmann, Lars
- Event
-
Veröffentlichung
- (who)
-
Freie Universität Berlin, School of Business & Economics
- (where)
-
Berlin
- (when)
-
2021
- DOI
-
doi:10.17169/refubium-32210
- Handle
- URN
-
urn:nbn:de:kobv:188-refubium-32485-6
- Last update
-
10.03.2025, 11:45 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Reiß, Markus
- Winkelmann, Lars
- Freie Universität Berlin, School of Business & Economics
Time of origin
- 2021