Arbeitspapier

Equilibria existence in Bayesian games: Climbing the countable Borel equivalence relation hierarchy

The solution concept of a Bayesian equilibrium of a Bayesian game is inherently an interim concept. The corresponding ex ante solution concept has been termed Harsányi equilibrium; examples have appeared in the literature showing that there are Bayesian games with uncountable state spaces that have no Bayesian approximate equilibria but do admit Harsányi approximate equilibrium, thus exhibiting divergent behaviour in the ex ante and interim stages. Smoothness, a concept from descriptive set theory, has been shown in previous works to guarantee the existence of Bayesian equilibria. We show here that higher rungs in the countable Borel equivalence relation hierarchy can also shed light on equilibrium existence. In particular, hyperfiniteness, the next step above smoothness, is a sufficient condition for the existence of Harsányi approximate equilibria in purely atomic Bayesian games.

Sprache
Englisch

Erschienen in
Series: Working Paper ; No. 2020-03

Klassifikation
Wirtschaft
Thema
Bayesian games
Equilibrium existence
Borel equivalence relations

Ereignis
Geistige Schöpfung
(wer)
Hellman, Ziv
Levy, Yehuda John
Ereignis
Veröffentlichung
(wer)
Bar-Ilan University, Department of Economics
(wo)
Ramat-Gan
(wann)
2020

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Hellman, Ziv
  • Levy, Yehuda John
  • Bar-Ilan University, Department of Economics

Entstanden

  • 2020

Ähnliche Objekte (12)