Arbeitspapier

Statistical inference on regression with spatial dependence

Central limit theorems are developed for instrumental variables estimates of linear and semi-parametric partly linear regression models for spatial data. General forms of spatial dependenceand heterogeneity in explanatory variables and unobservable disturbances are permitted. We discuss estimation of the variance matrix, including estimates that are robust to disturbance heteroscedasticity and/or dependence. A Monte Carlo study of finite-sample performance is included. In an empirical example, the estimates and robust and non-robust standard errors are computed from Indian regional data, following tests for spatial correlation in disturbances, and nonparametric regression fitting. Some final comments discuss modifications and extensions.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP08/11

Klassifikation
Wirtschaft
Estimation: General
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Thema
Linear regression
Partly linear regression
Nonparametric regression
Spatial data
Instrumental variables
Asymptotic normality
Variance estimation
Regression
Nichtparametrisches Verfahren
Varianzanalyse

Ereignis
Geistige Schöpfung
(wer)
Robinson, Peter M.
Thawornkaiwong, Supachoke
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2011

DOI
doi:10.1920/wp.cem.2011.0811
Handle
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Robinson, Peter M.
  • Thawornkaiwong, Supachoke
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2011

Ähnliche Objekte (12)