Arbeitspapier
Treatments of non-metric variables in partial least squares and principal component analysis
This paper reviews various treatments of non-metric variables in Partial Least Squares (PLS) and Principal Component Analysis (PCA) algorithms. The performance of different treatments is compared in the extensive simulation study under several typical data generating processes and recommendations are made. An application of PLS and PCA algorithms with non-metric variables to the generation of a wealth index is considered.
- Sprache
-
Englisch
- Erschienen in
-
Series: Discussion Papers ; No. 172
Statistical Simulation Methods: General
Index Numbers and Aggregation; Leading indicators
Urban, Rural, Regional, Real Estate, and Transportation Economics: Household Analysis: General
PCA
Partial Least Squares
PLS
non-metric variables
simulation
wealth index
Krivobokova, Tatyana
- Handle
- Letzte Aktualisierung
-
20.09.2024, 08:21 MESZ
Objekttyp
- Arbeitspapier
Beteiligte
- Yoon, Jisu
- Krivobokova, Tatyana
- Georg-August-Universität Göttingen, Courant Research Centre - Poverty, Equity and Growth (CRC-PEG)
Entstanden
- 2015