Arbeitspapier

Treatments of non-metric variables in partial least squares and principal component analysis

This paper reviews various treatments of non-metric variables in Partial Least Squares (PLS) and Principal Component Analysis (PCA) algorithms. The performance of different treatments is compared in the extensive simulation study under several typical data generating processes and recommendations are made. An application of PLS and PCA algorithms with non-metric variables to the generation of a wealth index is considered.

Sprache
Englisch

Erschienen in
Series: Discussion Papers ; No. 172

Klassifikation
Wirtschaft
Statistical Simulation Methods: General
Index Numbers and Aggregation; Leading indicators
Urban, Rural, Regional, Real Estate, and Transportation Economics: Household Analysis: General
Thema
Principal Component Analysis
PCA
Partial Least Squares
PLS
non-metric variables
simulation
wealth index

Ereignis
Geistige Schöpfung
(wer)
Yoon, Jisu
Krivobokova, Tatyana
Ereignis
Veröffentlichung
(wer)
Georg-August-Universität Göttingen, Courant Research Centre - Poverty, Equity and Growth (CRC-PEG)
(wo)
Göttingen
(wann)
2015

Handle
Letzte Aktualisierung
20.09.2024, 08:21 MESZ

Objekttyp

  • Arbeitspapier

Beteiligte

  • Yoon, Jisu
  • Krivobokova, Tatyana
  • Georg-August-Universität Göttingen, Courant Research Centre - Poverty, Equity and Growth (CRC-PEG)

Entstanden

  • 2015

Ähnliche Objekte (12)