Arbeitspapier

Some results on weak and strong tail dependence coefficients for means of copulas

Copulas represent the dependence structure of multivariate distributions in a natural way. In order to generate new copulas from given ones, several proposals found its way into statistical literature. One simple approach is to consider convex-combinations (i.e. weighted arithmetic means) of two or more copulas. Similarly, one might consider weighted geometric means. Consider, for instance, the Spearman copula, defined as the geometric mean of the maximum and the independence copula. In general, it is not known whether weighted geometric means of copulas produce copulas, again. However, applying a recent result of Liebscher (2006), we show that every weighted geometric mean of extreme-value copulas produces again an extreme-value copula. The second contribution of this paper is to calculate extremal dependence measures (e.g. weak and strong tail dependence coe±cients) for (weighted) geometric and arithmetic means of two copulas.

Language
Englisch

Bibliographic citation
Series: Diskussionspapier ; No. 78/2007

Classification
Wirtschaft
Subject
Tail Dependence
Extreme-value copulas
arithmetic and geometric mean
Kopula (Mathematik)
Extremwertanalyse
Maßzahl
Theorie

Event
Geistige Schöpfung
(who)
Fischer, Matthias J.
Klein, Ingo
Event
Veröffentlichung
(who)
Friedrich-Alexander-Universität Erlangen-Nürnburg, Lehrstuhl für Statistik und Ökonometrie
(where)
Nürnberg
(when)
2007

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Fischer, Matthias J.
  • Klein, Ingo
  • Friedrich-Alexander-Universität Erlangen-Nürnburg, Lehrstuhl für Statistik und Ökonometrie

Time of origin

  • 2007

Other Objects (12)