Corrosion Modeling of Aluminum Alloys: A Brief Review
Abstract: Corrosion remains a critical concern in various industries, particularly in applications involving aluminum alloys due to their widespread usage as light structural materials. This work provides a comprehensive overview of the recent advances in modeling techniques for better understanding the corrosion behavior of aluminum alloys. The present study encompasses the state‐of‐the‐art of computational approaches, highlighting their strengths and limitations. Special attention is given to transport models, galvanic couples, localized corrosion, and the incorporation of different factors, such as pH variations, electrolyte thicknesses and dynamic electrolytes into corrosion models. Furthermore, the review delves into both bulk and atmospheric corrosion models. On the other hand, this work also emphasizes a clear differentiation between models designed for bare aluminum alloys and those tailored for coated ones. Additionally, it addresses certain challenges associated with the experimental validation of such models. This review concludes with perspectives on both sophisticated transport models to bridge the gap between industrial and academic investigations, as well as the integration of machine learning and artificial intelligence techniques in corrosion modeling, offering promising directions for future research in this field.
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Erschienen in
-
Corrosion Modeling of Aluminum Alloys: A Brief Review ; day:28 ; month:02 ; year:2024 ; extent:12
ChemElectroChem ; (28.02.2024) (gesamt 12)
- Urheber
-
Ruiz‐Garcia, A.
Esquivel‐Peña, V.
Godínez, F. A.
Montoya, R.
- DOI
-
10.1002/celc.202300712
- URN
-
urn:nbn:de:101:1-2024022914115080664099
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
-
14.08.2025, 10:49 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Ruiz‐Garcia, A.
- Esquivel‐Peña, V.
- Godínez, F. A.
- Montoya, R.