Arbeitspapier

An Investigation into the Uncertainty Revision Process of Professional Forecasters

Following Manzan (2021), this paper examines how professional forecasters revise their uncertainty (variance) forecasts. We show that popular first moment "efficiency" tests are not applicable to study variance forecasts and instead employ monotonicity tests developed by Patton and Timmermann (2012). We find strong support for the Bayesian learning prediction of decreasing patterns in the variance of fixed-event density forecasts and their revisions as the forecast horizon declines. We explore the role of financial conditions indices in variance forecasts and document their predictive content for the revision process of US professional forecasters, although the evidence is weaker for euro area forecasters.

Sprache
Englisch

Erschienen in
Series: AEI Economics Working Paper ; No. 2023-14

Klassifikation
Wirtschaft
Thema
Variance forecasts
survey expectations
Bayesian learning

Ereignis
Geistige Schöpfung
(wer)
Clements, Michael P.
Rich, Robert W.
Tracy, Joseph S.
Ereignis
Veröffentlichung
(wer)
American Enterprise Institute (AEI)
(wo)
Washington, DC
(wann)
2023

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Clements, Michael P.
  • Rich, Robert W.
  • Tracy, Joseph S.
  • American Enterprise Institute (AEI)

Entstanden

  • 2023

Ähnliche Objekte (12)