Artikel
A novel best worst method robust data envelopment analysis: Incorporating decision makers' preferences in an uncertain environment
Data Envelopment Analysis (DEA) has been widely applied in measuring the efficiency of Decision-Making Units (DMUs). The conventional DEA has three major drawbacks: a) it does not consider Decision Makers' (DMs) preferences in the evaluation process, b) DMUs in this model are flexible in weighting the criteria to reach the maximum possible efficiency, and c) it ignores the uncertainty in data. However, in many real-world applications, data are uncertain as well as imprecise and managers want to impose their opinions in decision-making procedure. To address these problems, this paper develops a novel multi-objective Best Worst Method (BWM)-Robust DEA (RDEA) for incorporating DMs' preferences into DEA model in an uncertain environment. The proposed model tries to provide a new efficiency score which is more reliable and compatible with real problems by taking the advantages of the BWM to apply experts' opinions and RDEA to model the uncertainty This bi-objective BWM-RDEA model is solved utilizing amin-max technique and so as to illustrate its usefulness, this model is implemented for assessing Iranian airlines.
- Sprache
-
Englisch
- Erschienen in
-
Journal: Operations Research Perspectives ; ISSN: 2214-7160 ; Volume: 8 ; Year: 2021 ; Pages: 1-11 ; Amsterdam: Elsevier
- Klassifikation
-
Wirtschaft
- Thema
-
Best Worst Method (BWM)
Robust Optimization
Data Envelopment Analysis (DEA)
Airline Efficiency
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Omrani, Hashem
Valipour, Mahsa
Emrouznejad, Ali
- Ereignis
-
Veröffentlichung
- (wer)
-
Elsevier
- (wo)
-
Amsterdam
- (wann)
-
2021
- DOI
-
doi:10.1016/j.orp.2021.100184
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Artikel
Beteiligte
- Omrani, Hashem
- Valipour, Mahsa
- Emrouznejad, Ali
- Elsevier
Entstanden
- 2021