Embedding machine-learnt sub-grid variability improves climate model precipitation patterns

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
1 Online-Ressource.
Language
Englisch

Bibliographic citation
Embedding machine-learnt sub-grid variability improves climate model precipitation patterns ; volume:5 ; number:1 ; day:18 ; month:11 ; year:2024 ; pages:1-11 ; date:12.2024
Communications earth & environment ; 5, Heft 1 (18.11.2024), 1-11, 12.2024

Creator
Giles, Daniel
Briant, James
Morcrette, Cyril J.
Guillas, Serge
Contributor
SpringerLink (Online service)

DOI
10.1038/s43247-024-01885-8
URN
urn:nbn:de:101:1-2502042117249.438150302904
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:25 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Giles, Daniel
  • Briant, James
  • Morcrette, Cyril J.
  • Guillas, Serge
  • SpringerLink (Online service)

Other Objects (12)