Embedding machine-learnt sub-grid variability improves climate model precipitation patterns
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
1 Online-Ressource.
- Language
-
Englisch
- Bibliographic citation
-
Embedding machine-learnt sub-grid variability improves climate model precipitation patterns ; volume:5 ; number:1 ; day:18 ; month:11 ; year:2024 ; pages:1-11 ; date:12.2024
Communications earth & environment ; 5, Heft 1 (18.11.2024), 1-11, 12.2024
- Creator
-
Giles, Daniel
Briant, James
Morcrette, Cyril J.
Guillas, Serge
- Contributor
-
SpringerLink (Online service)
- DOI
-
10.1038/s43247-024-01885-8
- URN
-
urn:nbn:de:101:1-2502042117249.438150302904
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:25 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Giles, Daniel
- Briant, James
- Morcrette, Cyril J.
- Guillas, Serge
- SpringerLink (Online service)