Arbeitspapier
Count data models with unobserved heterogeneity: An empirical likelihood approach
As previously argued, the correlation between included and omitted regressors generally causes inconsistency of standard estimators for count data models. Using a specific residual function and suitable instruments, a consistent generalized method of moments estimator can be obtained under conditional moment restrictions. This approach is extended here by fully exploiting the model assumptions and thereby improving efficiency of the resulting estimator. Empirical likelihood estimation in particular has favorable properties in this setting compared to the two-step GMM procedure, which is demonstrated in a Monte Carlo experiment. The proposed method is applied to the estimation of a cigarette demand function.
- Sprache
-
Englisch
- Erschienen in
-
Series: Working Paper ; No. 0704
- Klassifikation
-
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
Consumer Economics: Empirical Analysis
- Thema
-
nonparametric likelihood
poisson model
nonlinear instrumental variables
optimal instruments
approximating functions
semiparametric efficiency
Konsumentenverhalten
Theorie
Nichtparametrisches Verfahren
Monte-Carlo-Methode
Zähldatenmodell
Schätzung
Zigarette
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Boes, Stefan
- Ereignis
-
Veröffentlichung
- (wer)
-
University of Zurich, Socioeconomic Institute
- (wo)
-
Zurich
- (wann)
-
2007
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Boes, Stefan
- University of Zurich, Socioeconomic Institute
Entstanden
- 2007