Arbeitspapier

Count data models with unobserved heterogeneity: An empirical likelihood approach

As previously argued, the correlation between included and omitted regressors generally causes inconsistency of standard estimators for count data models. Using a specific residual function and suitable instruments, a consistent generalized method of moments estimator can be obtained under conditional moment restrictions. This approach is extended here by fully exploiting the model assumptions and thereby improving efficiency of the resulting estimator. Empirical likelihood estimation in particular has favorable properties in this setting compared to the two-step GMM procedure, which is demonstrated in a Monte Carlo experiment. The proposed method is applied to the estimation of a cigarette demand function.

Language
Englisch

Bibliographic citation
Series: Working Paper ; No. 0704

Classification
Wirtschaft
Semiparametric and Nonparametric Methods: General
Single Equation Models; Single Variables: Discrete Regression and Qualitative Choice Models; Discrete Regressors; Proportions; Probabilities
Consumer Economics: Empirical Analysis
Subject
nonparametric likelihood
poisson model
nonlinear instrumental variables
optimal instruments
approximating functions
semiparametric efficiency
Konsumentenverhalten
Theorie
Nichtparametrisches Verfahren
Monte-Carlo-Methode
Zähldatenmodell
Schätzung
Zigarette

Event
Geistige Schöpfung
(who)
Boes, Stefan
Event
Veröffentlichung
(who)
University of Zurich, Socioeconomic Institute
(where)
Zurich
(when)
2007

Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Boes, Stefan
  • University of Zurich, Socioeconomic Institute

Time of origin

  • 2007

Other Objects (12)