Arbeitspapier

Forecasting and estimating multiple change-point models with an unknown number of change points

This paper develops a new approach to change-point modeling that allows for an unknown number of change points in the observed sample. Our model assumes that regime durations have a Poisson distribution. The model approximately nests the two most common approaches: the time-varying parameter model with a change point every period and the change-point model with a small number of regimes. We focus on the construction of reasonable hierarchical priors both for regime durations and for the parameters that characterize each regime. A Markov Chain Monte Carlo posterior sampler is constructed to estimate a change-point model for conditional means and variances. We find that our techniques work well in an empirical exercise involving U.S. inflation and GDP growth. Empirical results suggest that the number of change points is larger than previously estimated in these series and the implied model is similar to a time-varying parameter model with stochastic volatility

Sprache
Englisch

Erschienen in
Series: Staff Report ; No. 196

Klassifikation
Wirtschaft
Bayesian Analysis: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
General Aggregative Models: Forecasting and Simulation: Models and Applications
Thema
Strukturbruch
Prognoseverfahren
Markovscher Prozess
Schätzung
Gesamtwirtschaftliche Produktion
Inflation
USA
Statistische Verteilung

Ereignis
Geistige Schöpfung
(wer)
Koop, Gary M.
Potter, Simon M.
Ereignis
Veröffentlichung
(wer)
Federal Reserve Bank of New York
(wo)
New York, NY
(wann)
2004

Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Koop, Gary M.
  • Potter, Simon M.
  • Federal Reserve Bank of New York

Entstanden

  • 2004

Ähnliche Objekte (12)