Arbeitspapier

High-dimensional econometrics and regularized GMM

This chapter presents key concepts and theoretical results for analyzing estimation and inference in high-dimensional models. High-dimensional models are characterized by having a number of unknown parameters that is not vanishingly small relative to the sample size. We first present results in a framework where estimators of parameters of interest may be represented directly as approximate means. Within this context, we review fundamental results including high-dimensional central limit theorems, bootstrap approximation of high-dimensional limit distributions, and moderate deviation theory. We also review key concepts underlying inference when many parameters are of interest such as multiple testing with family-wise error rate or false discovery rate control. We then turn to a general high-dimensional minimum distance framework with a special focus on generalized method of moments problems where we present results for estimation and inference about model parameters. The presented results cover a wide array of econometric applications, and we discuss several leading special cases including high-dimensional linear regression and linear instrumental variables models to illustrate the general results.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP35/18

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Belloni, Alexandre
Chernozhukov, Victor
Chetverikov, Denis
Hansen, Christian Bailey
Kato, Kengo
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2018

DOI
doi:10.1920/wp.cem.2018.3518
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Belloni, Alexandre
  • Chernozhukov, Victor
  • Chetverikov, Denis
  • Hansen, Christian Bailey
  • Kato, Kengo
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2018

Ähnliche Objekte (12)