Arbeitspapier

Valid simultaneous inference in high-dimensional settings (with the HDM package for R)

Due to the increasing availability of high-dimensional empirical applications in many research disciplines, valid simultaneous inference becomes more and more important. For instance, high-dimensional settings might arise in economic studies due to very rich data sets with many potential covariates or in the analysis of treatment heterogeneities. Also the evaluation of potentially more complicated (non-linear) functional forms of the regression relationship leads to many potential variables for which simultaneous inferential statements might be of interest. Here we provide a review of classical and modern methods for simultaneous inference in (high-dimensional) settings and illustrate their use by a case study using the R package hdm. The R package hdm implements valid joint powerful and efficient hypothesis tests for a potentially large number of coefficients as well as the construction of simultaneous confidence intervals and, therefore, provides useful methods to perform valid post-selection inference based on the LASSO.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP30/19

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Bach, Philipp
Chernozhukov, Victor
Spindler, Martin
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2019

DOI
doi:10.1920/wp.cem.2019.3019
Handle
Letzte Aktualisierung
10.03.2025, 11:44 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Bach, Philipp
  • Chernozhukov, Victor
  • Spindler, Martin
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2019

Ähnliche Objekte (12)