Tunable Wood by Reversible Interlocking and Bioinspired Mechanical Gradients

Abstract: Elegant design principles in biological materials such as stiffness gradients or sophisticated interfaces provide ingenious solutions for an efficient improvement of their mechanical properties. When materials such as wood are directly used in high‐performance applications, it is not possible to entirely profit from these optimizations because stiffness alterations and fiber alignment of the natural material are not designed for the desired application. In this work, wood is turned into a versatile engineering material by incorporating mechanical gradients and by locally adapting the fiber alignment, using a shaping mechanism enabled by reversible interlocks between wood cells. Delignification of the renewable resource wood, a subsequent topographic stacking of the cellulosic scaffolds, and a final densification allow fabrication of desired 3D shapes with tunable fiber architecture. Additionally, prior functionalization of the cellulose scaffolds allows for obtaining tunable functionality combined with mechanical gradients. Locally controllable elastic moduli between 5 and 35 GPa are obtained, inspired by the ability of trees to tailor their macro‐ and micro‐structure. The versatility of this approach has significant relevance in the emerging field of high‐performance materials from renewable resources.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Tunable Wood by Reversible Interlocking and Bioinspired Mechanical Gradients ; volume:6 ; number:10 ; year:2019 ; extent:8
Advanced science ; 6, Heft 10 (2019) (gesamt 8)

Creator
Frey, Marion
Biffi, Giulia
Adobes‐Vidal, Maria
Zirkelbach, Meri
Wang, Yaru
Tu, Kunkun
Hirt, Ann M.
Masania, Kunal
Burgert, Ingo
Keplinger, Tobias

DOI
10.1002/advs.201802190
URN
urn:nbn:de:101:1-2022072507290826726012
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:31 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Frey, Marion
  • Biffi, Giulia
  • Adobes‐Vidal, Maria
  • Zirkelbach, Meri
  • Wang, Yaru
  • Tu, Kunkun
  • Hirt, Ann M.
  • Masania, Kunal
  • Burgert, Ingo
  • Keplinger, Tobias

Other Objects (12)