Arbeitspapier

Decentralization estimators for instrumental variable quantile regression models

The instrumental variable quantile regression (IVQR) model (Chernozhukov and Hansen, 2005) is a popular tool for estimating causal quantile effects with endogenous covariates. However, estimation is complicated by the non-smoothness and non-convexity of the IVQR GMM objective function. This paper shows that the IVQR estimation problem can be decomposed into a set of conventional quantile regression sub-problems which are convex and can be solved efficiently. This reformulation leads to new identification results and to fast, easy to implement, and tuning-free estimators that do not require the availability of high-level "black box" optimization routines.

Language
Englisch

Bibliographic citation
Series: cemmap working paper ; No. CWP42/19

Classification
Wirtschaft
Single Equation Models; Single Variables: Cross-Sectional Models; Spatial Models; Treatment Effect Models; Quantile Regressions
Single Equation Models: Single Variables: Instrumental Variables (IV) Estimation
Subject
instrumental variables
quantile regression
contraction mapping
fixed pointestimator
bootstrap

Event
Geistige Schöpfung
(who)
Kaido, Hiroaki
Wüthrich, Kaspar
Event
Veröffentlichung
(who)
Centre for Microdata Methods and Practice (cemmap)
(where)
London
(when)
2019

DOI
doi:10.1920/wp.cem.2019.4219
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Kaido, Hiroaki
  • Wüthrich, Kaspar
  • Centre for Microdata Methods and Practice (cemmap)

Time of origin

  • 2019

Other Objects (12)