Development of an LSTM broadcasting deep-learning framework for regional air pollution forecast improvement
Abstract 2.5 and O3 forecasts for the next 48 h were obtained using 3D chemical transport model simulation results and ground observation data as the inputs. The root mean square error associated with the proposed framework was 40 % and 20 % lower than those of the Weather Research and Forecasting–Community Multiscale Air Quality model and an offline combination of the deep-learning and spatial interpolation methods, respectively. The novel LSTM broadcasting framework can be extended for air pollution forecasting in other regions of interest.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Development of an LSTM broadcasting deep-learning framework for regional air pollution forecast improvement ; volume:15 ; number:22 ; year:2022 ; pages:8439-8452 ; extent:14
Geoscientific model development ; 15, Heft 22 (2022), 8439-8452 (gesamt 14)
- Creator
-
Sun, Haochen
Fung, Jimmy C. H.
Chen, Yiang
Li, Zhenning
Yuan, Dehao
Chen, Wanying
Lu, Xingcheng
- DOI
-
10.5194/gmd-15-8439-2022
- URN
-
urn:nbn:de:101:1-2022112404304634171543
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:34 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Sun, Haochen
- Fung, Jimmy C. H.
- Chen, Yiang
- Li, Zhenning
- Yuan, Dehao
- Chen, Wanying
- Lu, Xingcheng