Arbeitspapier

Interventions in ingarch processes

We study the problem of intervention effects generating various types of outliers in a linear count time series model. This model belongs to the class of observation driven models and extends the class of Gaussian linear time series models within the exponential family framework. Studies about effects of covariates and interventions for count time series models have largely fallen behind due to the fact that the underlying process, whose behavior determines the dynamics of the observed process, is not observed. We suggest a computationally feasible approach to these problems, focusing especially on the detection and estimation of sudden shifts and outliers. To identify successfully such unusual events we employ the maximum of score tests, whose critical values in finite samples are determined by parametric bootstrap. The usefulness of the proposed methods is illustrated using simulated and real data examples.

Language
Englisch

Bibliographic citation
Series: Technical Report ; No. 2009,11

Subject
parametric bootstrap
generalized linear models
observation driven models
level shifts
transient shifts
outliers
Zeitreihenanalyse
Zähldatenmodell
Theorie

Event
Geistige Schöpfung
(who)
Fokianos, Konstantions
Fried, Roland
Event
Veröffentlichung
(who)
Technische Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen
(where)
Dortmund
(when)
2009

Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Fokianos, Konstantions
  • Fried, Roland
  • Technische Universität Dortmund, Sonderforschungsbereich 475 - Komplexitätsreduktion in Multivariaten Datenstrukturen

Time of origin

  • 2009

Other Objects (12)