Pressure‐robust and conforming discretization of the Stokes equations on anisotropic meshes
Abstract: Pressure‐robust discretizations for incompressible flows have been in the focus of research for the past years. Many publications construct exactly divergence‐free methods or use a reconstruction approach [13] for existing methods like the Crouzeix–Raviart element in order to achieve pressure‐robustness. To the best of our knowledge, except for our recent publications [3, 4], all those articles impose a condition on the shape‐regularity of the mesh, and the two mentioned papers that allow for anisotropic elements use a non‐conforming velocity approximation. Based on the classical Bernardi–Raugel element we provide a conforming pressure‐robust discretization using the reconstruction approach on anisotropic meshes. Numerical examples support the theory.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Pressure‐robust and conforming discretization of the Stokes equations on anisotropic meshes ; volume:23 ; number:1 ; year:2023 ; extent:6
Proceedings in applied mathematics and mechanics ; 23, Heft 1 (2023) (gesamt 6)
- Creator
-
Kempf, Volker
- DOI
-
10.1002/pamm.202200096
- URN
-
urn:nbn:de:101:1-2023060115183394183744
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:58 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Kempf, Volker