Arbeitspapier
Honest confidence regions for a regression parameter in logistic regression with a large number of controls
This paper considers inference in logistic regression models with high dimensional data. We propose new methods for estimating and constructing confidence regions for a regression parameter of primary interest »0, a parameter in front of the regressor of interest, such as the treatment variable or a policy variable. These methods allow to estimate »0 at the root-n rate when the total number p of other regressors, called controls, exceed the sample size n, using the sparsity assumptions. The sparsity assumption means that only s unknown controls are needed to accurately approximate the nuisance part of the regression function, where s is smaller than n. Importantly, the estimators and these resulting confidence regions are 'honest' in the formal sense that their properties hold uniformly over s-sparse models. Moreover, these procedures do not rely on traditional 'consistent model selection' arguments for their validity; in fact, they are robust with respect to 'moderate' model selection mistakes in variable selection steps. Moreover, the estimators are semi-parametrically efficient in the sense of attaining the semi-parametric efficiency bounds for the class of models in this paper.
- Sprache
-
Englisch
- Erschienen in
-
Series: cemmap working paper ; No. CWP67/13
- Klassifikation
-
Wirtschaft
- Thema
-
uniformly valid inference
instruments
double selection
Neymanization
optimality
sparsity
model selection
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Belloni, Alexandre
Chernozhukov, Victor
Wei, Ying
- Ereignis
-
Veröffentlichung
- (wer)
-
Centre for Microdata Methods and Practice (cemmap)
- (wo)
-
London
- (wann)
-
2013
- DOI
-
doi:10.1920/wp.cem.2013.6713
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Belloni, Alexandre
- Chernozhukov, Victor
- Wei, Ying
- Centre for Microdata Methods and Practice (cemmap)
Entstanden
- 2013