Arbeitspapier

Honest confidence regions for a regression parameter in logistic regression with a large number of controls

This paper considers inference in logistic regression models with high dimensional data. We propose new methods for estimating and constructing confidence regions for a regression parameter of primary interest »0, a parameter in front of the regressor of interest, such as the treatment variable or a policy variable. These methods allow to estimate »0 at the root-n rate when the total number p of other regressors, called controls, exceed the sample size n, using the sparsity assumptions. The sparsity assumption means that only s unknown controls are needed to accurately approximate the nuisance part of the regression function, where s is smaller than n. Importantly, the estimators and these resulting confidence regions are 'honest' in the formal sense that their properties hold uniformly over s-sparse models. Moreover, these procedures do not rely on traditional 'consistent model selection' arguments for their validity; in fact, they are robust with respect to 'moderate' model selection mistakes in variable selection steps. Moreover, the estimators are semi-parametrically efficient in the sense of attaining the semi-parametric efficiency bounds for the class of models in this paper.

Sprache
Englisch

Erschienen in
Series: cemmap working paper ; No. CWP67/13

Klassifikation
Wirtschaft
Thema
uniformly valid inference
instruments
double selection
Neymanization
optimality
sparsity
model selection

Ereignis
Geistige Schöpfung
(wer)
Belloni, Alexandre
Chernozhukov, Victor
Wei, Ying
Ereignis
Veröffentlichung
(wer)
Centre for Microdata Methods and Practice (cemmap)
(wo)
London
(wann)
2013

DOI
doi:10.1920/wp.cem.2013.6713
Handle
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Belloni, Alexandre
  • Chernozhukov, Victor
  • Wei, Ying
  • Centre for Microdata Methods and Practice (cemmap)

Entstanden

  • 2013

Ähnliche Objekte (12)