Conference paper | Konferenzbeitrag
Mining Social Science Publications for Survey Variables
Research in Social Science is usually based on survey data where individual research questions relate to observable concepts (variables). However, due to a lack of standards for data citations a reliable identification of the variables used is often difficult. In this paper, we present a work-in-progress study that seeks to provide a solution to the variable detection task based on supervised machine learning algorithms, using a linguistic analysis pipeline to extract a rich feature set, including terminological concepts and similarity metric scores. Further, we present preliminary results on a small dataset that has been specifically designed for this task, yielding modest improvements over the baseline.
- Extent
-
Seite(n): 47-52
- Language
-
Englisch
- Notes
-
Status: Postprint; begutachtet (peer reviewed)
- Bibliographic citation
-
Proceedings of the Second Workshop on NLP and Computational Social Science
- Subject
-
Literatur, Rhetorik, Literaturwissenschaft
Publizistische Medien, Journalismus,Verlagswesen
Literaturwissenschaft, Sprachwissenschaft, Linguistik
Informationswissenschaft
Datengewinnung
künstliche Intelligenz
Begriff
Algorithmus
Computerlinguistik
Befragung
Publikation
Sozialwissenschaft
Fachliteratur
Indikatorenbildung
Zeitschrift
- Event
-
Geistige Schöpfung
- (who)
-
Zielinski, Andrea
Mutschke, Peter
- Event
-
Veröffentlichung
- (who)
-
Association for Computational Linguistics (ACL)
- (when)
-
2017
- URN
-
urn:nbn:de:0168-ssoar-57722-7
- Rights
-
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln
- Last update
-
21.06.2024, 4:27 PM CEST
Data provider
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. If you have any questions about the object, please contact the data provider.
Object type
- Konferenzbeitrag
Associated
- Zielinski, Andrea
- Mutschke, Peter
- Association for Computational Linguistics (ACL)
Time of origin
- 2017