Artikel

Structural Vector Autoregressions : Checking Identifying Long-Run Restrictions via Heteroskedasticity

Abstract Long-run restrictions have been used extensively for identifying structural shocks in vector autoregressive (VAR) analysis. Such restrictions are typically just-identifying but can be checked by utilizing changes in volatility. This paper reviews and contrasts the volatility models that have been used for this purpose. Three main approaches have been used, exogenously generated changes in the unconditional residual covariance matrix, changing volatility modelled by a Markov switching mechanism and multivariate generalized autoregressive conditional heteroskedasticity models. Using changes in volatility for checking long-run identifying restrictions in structural VAR analysis is illustrated by reconsidering models for identifying fundamental components of stock prices.

Language
Englisch

Bibliographic citation
Journal: Journal of Economic Surveys ; ISSN: 0950-0804 ; Volume: 30 ; Year: 2016 ; Pages: 377-392 ; Hoboken: Wiley

Classification
Wirtschaft
Multiple or Simultaneous Equation Models: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes; State Space Models
Subject
vector autoregression
heteroskedasticity
vector GARCH
conditional heteroskedasticity
Markov switching model

Event
Geistige Schöpfung
(who)
Lütkepohl, Helmut
Velinov, Anton
Event
Veröffentlichung
(who)
Wiley
ZBW – Leibniz Information Centre for Economics
(where)
Hoboken
(when)
2016

DOI
doi:10.1111/joes.12100
Handle
Last update
10.03.2025, 11:43 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Lütkepohl, Helmut
  • Velinov, Anton
  • Wiley
  • ZBW – Leibniz Information Centre for Economics

Time of origin

  • 2016

Other Objects (12)