A Global Poincaré inequality on Graphs via a Conical Curvature-Dimension Condition

Abstract: We introduce and study the conical curvature-dimension condition, CCD (K, N), for finite graphs.We show that CCD (K, N) provides necessary and sufficient conditions for the underlying graph to satisfy a sharp global Poincaré inequality which in turn translates to a sharp lower bound for the first eigenvalues of these graphs. Another application of the conical curvature-dimension analysis is finding a sharp estimate on the curvature of complete graphs

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
A Global Poincaré inequality on Graphs via a Conical Curvature-Dimension Condition ; volume:6 ; number:1 ; year:2018 ; pages:32-47 ; extent:16
Analysis and geometry in metric spaces ; 6, Heft 1 (2018), 32-47 (gesamt 16)

Creator
Lakzian, Sajjad
Mcguirk, Zachary

DOI
10.1515/agms-2018-0002
URN
urn:nbn:de:101:1-2024041116151395088161
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 10:49 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Lakzian, Sajjad
  • Mcguirk, Zachary

Other Objects (12)