Artikel

Partial least squares structural equation modeling-based discrete choice modeling: an illustration in modeling retailer choice

Commonly used discrete choice model analyses (e.g., probit, logit and multinomial logit models) draw on the estimation of importance weights that apply to different attribute levels. But directly estimating the importance weights of the attribute as a whole, rather than of distinct attribute levels, is challenging. This article substantiates the usefulness of partial least squares structural equation modeling (PLS-SEM) for the analysis of stated preference data generated through choice experiments in discrete choice modeling. This ability of PLS-SEM to directly estimate the importance weights for attributes as a whole, rather than for the attribute's levels, and to compute determinant respondent-specific latent variable scores applicable to attributes, can more effectively model and distinguish between rational (i.e., optimizing) decisions and pragmatic (i.e., heuristic) ones, when parameter estimations for attributes as a whole are crucial to understanding choice decisions.

Sprache
Englisch

Erschienen in
Journal: Business Research ; ISSN: 2198-2627 ; Volume: 12 ; Year: 2019 ; Issue: 1 ; Pages: 115-142 ; Heidelberg: Springer

Klassifikation
Management
Thema
Discrete choice modeling
Experiments
Structural equation modeling
Partial least squares
Path modeling

Ereignis
Geistige Schöpfung
(wer)
Hair, Joseph F.
Ringle, Christian M.
Gudergan, Siegfried P.
Fischer, Andreas
Nitzl, Christian
Menictas, Con
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Heidelberg
(wann)
2019

DOI
doi:10.1007/s40685-018-0072-4
Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Hair, Joseph F.
  • Ringle, Christian M.
  • Gudergan, Siegfried P.
  • Fischer, Andreas
  • Nitzl, Christian
  • Menictas, Con
  • Springer

Entstanden

  • 2019

Ähnliche Objekte (12)