High-power-density hybrid planar-type silicon thermoelectric generator with phononic nanostructures

Abstract: Energy harvesting is essential for the internet-of-things networks where a tremendous number of sensors require power. Thermoelectric generators (TEGs), especially those based on silicon (Si), are a promising source of clean and sustainable energy for these sensors. Although large thermoelectric figure of merit has been reported for nanostructured Si material, however, nanostructuring has not been effectively used in device applications, and the reported performance of hybrid planar-type Si TEGs never exceeded normalized powers of
due to the poor thermoelectric performance of Si and the suboptimal design of the devices. Here, we report a hybrid planar-type Si TEG with a normalized power of
around room temperature. The increase in thermoelectric performance of Si by nanostructuring based on the phonon-glass electron-crystal concept and optimized three-dimensional heat-guiding structures resulted in a record-high power density. The improvement of power generation by a factor of 10 makes the once-a-day sensing applications realistic in a practical environment for the first time. In-field testing demonstrated that our Si TEG functions as a sufficient energy harvester. This demonstration paves the way for energy harvesting with a low-environmental load and cost-effective material with high throughput, a necessary condition for energy-autonomous sensor nodes for the trillion sensors universe

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch
Anmerkungen
Materials today. - 45 (2024) , 101452, ISSN: 2542-5293

Klassifikation
Elektrotechnik, Elektronik

Ereignis
Veröffentlichung
(wo)
Freiburg
(wer)
Universität
(wann)
2024
Urheber
Yanagisawa, Ryoto
Koike, Sota
Nawae, Tomoki
Tsujii, Naohito
Wang, Yanan
Mori, Takao
Ruther, Patrick
Paul, Oliver
Yoshida, Yoshifumi
Harashima, Junichi
Kinumura, Takashi
Inada, Yuta
Nomura, Masahiro
Beteiligte Personen und Organisationen

DOI
10.1016/j.mtphys.2024.101452
URN
urn:nbn:de:bsz:25-freidok-2498162
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 10:46 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

Entstanden

  • 2024

Ähnliche Objekte (12)