Thermally Activated Aromatic Ionic Dopants (TA‐AIDs) Enabling Stable Doping, Orthogonal Processing and Direct Patterning
Abstract: Doping plays a critical role in organic electronics, and dopant design has been central in the development of functional and stable doping. In this study, there is departure from conventional molecular dopants and a new class of dopants are reported – aromatic ionic dopants (AIDs). AIDs consist of a pair of aromatic cation and anion that are responsible for molecular doping reaction and charge balancing separately. It is shown that the first AID made from cycloheptatrienyl (tropylium) cation and pentacyanocyclopentadienide anion (PCCp), abbreviated as T‐PCCp, can function as an effective p‐type dopant to dope polydioxythiophenes. Here, tropylium cation induces the doping reaction while the PCCp anion stabilizes the generated polarons and bipolarons. With T‐PCCp, a highly doped (≈120 S/cm) and stable system is achieved up to 150 °C, an orthogonal (sequential) solution processing resulting from the immiscibility of the dopant and the polymer host, and a high‐resolution direct micropatterning with laser writing resulted from a thermally activated doping process.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Thermally Activated Aromatic Ionic Dopants (TA‐AIDs) Enabling Stable Doping, Orthogonal Processing and Direct Patterning ; day:11 ; month:12 ; year:2022 ; extent:12
Advanced functional materials ; (11.12.2022) (gesamt 12)
- Creator
-
Ke, Zhifan
Ahmed, Mustafa H.
Abtahi, Ashkan
Hsu, Shih‐Hsin
Wu, Wenting
Espenship, Michael F.
Baustert, Kyle N.
Graham, Kenneth R.
Laskin, Julia
Pan, Liang
Mei, Jianguo
- DOI
-
10.1002/adfm.202211522
- URN
-
urn:nbn:de:101:1-2022121214095387312977
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:20 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Ke, Zhifan
- Ahmed, Mustafa H.
- Abtahi, Ashkan
- Hsu, Shih‐Hsin
- Wu, Wenting
- Espenship, Michael F.
- Baustert, Kyle N.
- Graham, Kenneth R.
- Laskin, Julia
- Pan, Liang
- Mei, Jianguo