Investigation and benchmarking of U-Nets on prostate segmentation tasks
Abstract: In healthcare, a growing number of physicians and support staff are striving to facilitate personalized radiotherapy regimens for patients with prostate cancer. This is because individual patient biology is unique, and employing a single approach for all is inefficient. A crucial step for customizing radiotherapy planning and gaining fundamental information about the disease, is the identification and delineation of targeted structures. However, accurate biomedical image segmentation is time-consuming, requires considerable experience and is prone to observer variability. In the past decade, the use of deep learning models has significantly increased in the field of medical image segmentation. At present, a vast number of anatomical structures can be demarcated on a clinician’s level with deep learning models. These models would not only unload work, but they can offer unbiased characterization of the disease. The main architectures used in segmentation are the U-Net and its variants, that exhibit outstanding performances. However, reproducing results or directly comparing methods is often limited by closed source of data and the large heterogeneity among medical images. With this in mind, our intention is to provide a reliable source for assessing deep learning models. As an example, we chose the challenging task of delineating the prostate gland in multi-modal images. First, this paper provides a comprehensive review of current state-of-the-art convolutional neural networks for 3D prostate segmentation. Second, utilizing public and in-house CT and MR datasets of varying properties, we created a framework for an objective comparison of automatic prostate segmentation algorithms. The framework was used for rigorous evaluations of the models, highlighting their strengths and weaknesses
- Standort
-
Deutsche Nationalbibliothek Frankfurt am Main
- Umfang
-
Online-Ressource
- Sprache
-
Englisch
- Anmerkungen
-
Computerized medical imaging and graphics. - 107 (2023) , 102241, ISSN: 1879-0771
- Ereignis
-
Veröffentlichung
- (wo)
-
Freiburg
- (wer)
-
Universität
- (wann)
-
2023
- Urheber
-
Bhandary, Shrajan
Kuhn, Dejan
Babaiee, Zahra
Fechter, Tobias
Benndorf, Matthias
Zamboglou, Constantinos
Grosu, Anca-Ligia
Grosu, Radu
- DOI
-
10.1016/j.compmedimag.2023.102241
- URN
-
urn:nbn:de:bsz:25-freidok-2365798
- Rechteinformation
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Letzte Aktualisierung
- 14.08.2025, 11:01 MESZ
Datenpartner
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Beteiligte
- Bhandary, Shrajan
- Kuhn, Dejan
- Babaiee, Zahra
- Fechter, Tobias
- Benndorf, Matthias
- Zamboglou, Constantinos
- Grosu, Anca-Ligia
- Grosu, Radu
- Universität
Entstanden
- 2023
Ähnliche Objekte (12)
10-Jahres-Letalität, Krankheitsprogress und behandlungsassoziierte Nebenwirkungen bei Männern mit lokalisiertem Prostatakarzinom aus der randomisierten, kontrollierten ProtecT-Studie, analysiert nach erhaltener Therapie : = [10-Year mortality, disease progression, and treatment-related side effects in men with localized prostate cancer from the ProtecT Randomised Controlled Trial, analyzed according to treatment received]