Localization and multiplicity in the homogenization of nonlinear problems

Abstract: We propose a method for the localization of solutions for a class of nonlinear problems arising in the homogenization theory. The method combines concepts and results from the linear theory of PDEs, linear periodic homogenization theory, and nonlinear functional analysis. Particularly, we use the Moser-Harnack inequality, arguments of fixed point theory and Ekeland's variational principle. A significant gain in the homogenization theory of nonlinear problems is that our method makes possible the emergence of finitely or infinitely many solutions.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Localization and multiplicity in the homogenization of nonlinear problems ; volume:9 ; number:1 ; year:2019 ; pages:292-304 ; extent:13
Advances in nonlinear analysis ; 9, Heft 1 (2019), 292-304 (gesamt 13)

Creator
Bunoiu, Renata
Precup, Radu

DOI
10.1515/anona-2020-0001
URN
urn:nbn:de:101:1-2405021554466.907544608407
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
14.08.2025, 11:04 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Bunoiu, Renata
  • Precup, Radu

Other Objects (12)