Localization and multiplicity in the homogenization of nonlinear problems
Abstract: We propose a method for the localization of solutions for a class of nonlinear problems arising in the homogenization theory. The method combines concepts and results from the linear theory of PDEs, linear periodic homogenization theory, and nonlinear functional analysis. Particularly, we use the Moser-Harnack inequality, arguments of fixed point theory and Ekeland's variational principle. A significant gain in the homogenization theory of nonlinear problems is that our method makes possible the emergence of finitely or infinitely many solutions.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Localization and multiplicity in the homogenization of nonlinear problems ; volume:9 ; number:1 ; year:2019 ; pages:292-304 ; extent:13
Advances in nonlinear analysis ; 9, Heft 1 (2019), 292-304 (gesamt 13)
- Creator
-
Bunoiu, Renata
Precup, Radu
- DOI
-
10.1515/anona-2020-0001
- URN
-
urn:nbn:de:101:1-2405021554466.907544608407
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 11:04 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Bunoiu, Renata
- Precup, Radu