Two‐Terminal Molecular Memory through Reversible Switching of Quantum Interference Features in Tunneling Junctions

Abstract: Large‐area molecular tunneling junctions comprising self‐assembled monolayers of redox‐active molecules are described that exhibit two‐terminal bias switching. The as‐prepared monolayers undergo partial charge transfer to the underlying metal substrate (Au, Pt, or Ag), which converts their cores from a quinoid to a hydroquinoid form. The resulting rearomatization converts the bond topology from a cross‐conjugated to a linearly conjugated π system. The cross‐conjugated form correlates to the appearance of an interference feature in the transmission spectrum that vanishes for the linearly conjugated form. Owing to the presence of electron‐withdrawing nitrile groups, the reduction potential and the interference feature lie close to the work function and Fermi level of the metallic substrate. We exploited the relationship between conjugation patterns and quantum interference to create nonvolatile memory in proto‐devices using eutectic Ga–In as the top contact.

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
Online-Ressource
Language
Englisch

Bibliographic citation
Two‐Terminal Molecular Memory through Reversible Switching of Quantum Interference Features in Tunneling Junctions ; volume:57 ; number:48 ; year:2018 ; pages:15681-15685 ; extent:5
Angewandte Chemie / International edition. International edition ; 57, Heft 48 (2018), 15681-15685 (gesamt 5)

Creator
Carlotti, Marco
Soni, Saurabh
Kumar, Sumit
Ai, Yong
Sauter, Eric
Zharnikov, Michael
Chiechi, Ryan C.

DOI
10.1002/anie.201807879
URN
urn:nbn:de:101:1-2022091206582527064714
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:22 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

Other Objects (12)