Arbeitspapier

Forecasting With Panel Data: Estimation Uncertainty Versus Parameter Heterogeneity

We develop novel forecasting methods for panel data with heterogeneous parameters and examine them together with existing approaches. We conduct a systematic comparison of their predictive accuracy in settings with different cross-sectional (N) and time (T) dimensions and varying degrees of parameter heterogeneity. We investigate conditions under which panel forecasting methods can perform better than forecasts based on individual estimates and demonstrate how gains in predictive accuracy depend on the degree of parameter heterogeneity, whether heterogeneity is correlated with the regressors, the goodness of fit of the model, and, particularly, the time dimension of the data set. We propose optimal combination weights for forecasts based on pooled and individual estimates and develop a novel forecast poolability test that can be used as a pretesting tool. Through a set of Monte Carlo simulations and three empirical applications to house prices, CPI inflation, and stock returns, we show that no single forecasting approach dominates uniformly. However, forecast combination and shrinkage methods provide better overall forecasting performance and offer more attractive risk profiles compared to individual, pooled, and random effects methods.

Sprache
Englisch

Erschienen in
Series: CESifo Working Paper ; No. 9690

Klassifikation
Wirtschaft
Multiple or Simultaneous Equation Models: Panel Data Models; Spatio-temporal Models
Forecasting Models; Simulation Methods
Thema
forecasting
panel data
heterogeneity
forecast evaluation
forecast combination
shrinkage
pooling

Ereignis
Geistige Schöpfung
(wer)
Pesaran, M. Hashem
Pick, Andreas
Timmermann, Allan
Ereignis
Veröffentlichung
(wer)
Center for Economic Studies and ifo Institute (CESifo)
(wo)
Munich
(wann)
2022

Handle
Letzte Aktualisierung
10.03.2025, 11:42 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Pesaran, M. Hashem
  • Pick, Andreas
  • Timmermann, Allan
  • Center for Economic Studies and ifo Institute (CESifo)

Entstanden

  • 2022

Ähnliche Objekte (12)