On Derivations of Operator Algebras with Involution
Abstract: The purpose of this paper is to prove the following result. Let X be a complex Hilbert space, let L (X) be an algebra of all bounded linear operators on X and let A (X) ⊂ L (X) be a standard operator algebra, which is closed under the adjoint operation. Suppose there exists a linear mapping D: A (X) → L (X) satisfying the relation 2D (AA*A) = D (AA*) A + AA*D (A) + D (A) A*A + AD (A*A) for all A ∈ A (X). In this case, D is of the form D (A) = [A,B] for all A ∈ A (X) and some fixed B ∈ L (X), which means that D is a derivation.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
On Derivations of Operator Algebras with Involution ; volume:47 ; number:4 ; year:2014 ; pages:784-790 ; extent:7
Demonstratio mathematica ; 47, Heft 4 (2014), 784-790 (gesamt 7)
- Creator
-
Širovnik, Nejc
Vukman, Joso
- DOI
-
10.2478/dema-2014-0063
- URN
-
urn:nbn:de:101:1-2411181538179.686881031218
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:21 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Širovnik, Nejc
- Vukman, Joso