Arbeitspapier

Seasonal long memory in intraday volatility and trading volume of Dow Jones stocks

It is well known that intraday volatilities and trading volumes exhibit strong seasonal features. These seasonalities are usually modeled using dummy variables or deterministic functions. Here, we propose a test for seasonal long memory with a known frequency. Using this test, we show that deterministic seasonality is an accurate model for the DJIA index but not for the component stocks. These still exhibit significant and persistent periodicity after seasonal de-meaning so that more evolved seasonal long memory models are required to model their behavior.

Language
Englisch

Bibliographic citation
Series: Hannover Economic Papers (HEP) ; No. 599

Classification
Wirtschaft
Hypothesis Testing: General
Single Equation Models; Single Variables: Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
Financial Econometrics
Asset Pricing; Trading Volume; Bond Interest Rates
International Financial Markets
Subject
Intraday Volatility
Trading Volume
Seasonality
Long Memory

Event
Geistige Schöpfung
(who)
Voges, Michelle
Leschinski, Christian
Sibbertsen, Philipp
Event
Veröffentlichung
(who)
Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät
(where)
Hannover
(when)
2017

Handle
Last update
18.04.0004, 6:42 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Arbeitspapier

Associated

  • Voges, Michelle
  • Leschinski, Christian
  • Sibbertsen, Philipp
  • Leibniz Universität Hannover, Wirtschaftswissenschaftliche Fakultät

Time of origin

  • 2017

Other Objects (12)