LEARNING TO SIEVE: PREDICTION OF GRADING CURVES FROM IMAGES OF CONCRETE AGGREGATE

Abstract. A large component of the building material concrete consists of aggregate with varying particle sizes between 0.125 and 32 mm. Its actual size distribution significantly affects the quality characteristics of the final concrete in both, the fresh and hardened states. The usually unknown variations in the size distribution of the aggregate particles, which can be large especially when using recycled aggregate materials, are typically compensated by an increased usage of cement which, however, has severe negative impacts on economical and ecological aspects of the concrete production. In order to allow a precise control of the target properties of the concrete, unknown variations in the size distribution have to be quantified to enable a proper adaptation of the concrete’s mixture design in real time. To this end, this paper proposes a deep learning based method for the determination of concrete aggregate grading curves. In this context, we propose a network architecture applying multi-scale feature extraction modules in order to handle the strongly diverse object sizes of the particles. Furthermore, we propose and publish a novel dataset of concrete aggregate used for the quantitative evaluation of our method.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
LEARNING TO SIEVE: PREDICTION OF GRADING CURVES FROM IMAGES OF CONCRETE AGGREGATE ; volume:V-2-2022 ; year:2022 ; pages:227-235 ; extent:9
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; V-2-2022 (2022), 227-235 (gesamt 9)

Urheber
Coenen, M.
Beyer, D.
Heipke, C.
Haist, M.

DOI
10.5194/isprs-annals-V-2-2022-227-2022
URN
urn:nbn:de:101:1-2022051905190193539603
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
15.08.2025, 07:30 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Coenen, M.
  • Beyer, D.
  • Heipke, C.
  • Haist, M.

Ähnliche Objekte (12)