Arbeitspapier

Exploring credit data

Credit scoring methods aim to assess the default risk of a potential borrower. This involves typically the calculation of a credit score and the estimation of the probability of default. One of the standard approaches is logistic discriminant analysis, also referred to as logit model. This model maps explanatory variables for the default risk to a credit score using a linear function. Nonlinearity can be included by using polynomial terms or piecewise linear functions. This may give however only a limited reflection of a truly nonlinear relationship. Moreover, an additional modeling step may be necessary to determine the optimal polynomial order or the optimal interval classification. This paper presents semiparametric extensions of the logit model which directly allow for nonlinear relationships to be part of the explanatory variables. The technique is based on the theory generalized partial linear models. We illustrate the advantages of this approach using a consumer retail banking data set.

Sprache
Englisch

Erschienen in
Series: SFB 373 Discussion Paper ; No. 2002,79

Klassifikation
Wirtschaft

Ereignis
Geistige Schöpfung
(wer)
Müller, Marlene
Härdle, Wolfgang
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes
(wo)
Berlin
(wann)
2002

Handle
URN
urn:nbn:de:kobv:11-10049513
Letzte Aktualisierung
10.03.2025, 11:43 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Müller, Marlene
  • Härdle, Wolfgang
  • Humboldt University of Berlin, Interdisciplinary Research Project 373: Quantification and Simulation of Economic Processes

Entstanden

  • 2002

Ähnliche Objekte (12)