Arbeitspapier
Identification analysis in models with unrestricted latent variables: Fixed effects and initial conditions
Many structural econometric models include latent variables on whose probability distributions one may wish to place minimal restrictions. Leading examples in panel data models are individual-specific variables sometimes treated as "fixed effects" and, in dynamic models, initial conditions. This paper presents a generally applicable method for characterizing sharp identified sets when models place no restrictions on the probability distribution of certain latent variables and no restrictions on their covariation with other variables. Endogenous explanatory variables can be easily accommodated. Examples of application to some static and dynamic binary, ordered and multiple discrete choice panel data models are presented.
- Language
-
Englisch
- Bibliographic citation
-
Series: cemmap working paper ; No. CWP20/23
- Classification
-
Wirtschaft
- Subject
-
Panel
Variable
Statistical distribution
Modeling
Panel
Variable
Statistische Verteilung
Modellierung
- Event
-
Geistige Schöpfung
- (who)
-
Chesher, Andrew
Rosen, Adam M.
Zhang, Yuanqi
- Event
-
Veröffentlichung
- (who)
-
Centre for Microdata Methods and Practice (cemmap)
- (where)
-
London
- (when)
-
2023
- DOI
-
doi:10.47004/wp.cem.2023.2023
- Handle
- Last update
-
10.03.2025, 11:42 AM CET
Data provider
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.
Object type
- Arbeitspapier
Associated
- Chesher, Andrew
- Rosen, Adam M.
- Zhang, Yuanqi
- Centre for Microdata Methods and Practice (cemmap)
Time of origin
- 2023