Estimating Item Parameters in Multistage Designs With the tmt Package in R
Abstract: Various likelihood-based methods are available for the parameter estimation of item response theory models (IRT), leading to comparable parameter estimates. Considering multistage testing (MST) designs, Glas (1988; https://doi.org/10.2307/1164950) stated that the conditional maximum likelihood (CML) method in its original formulation leads to severely biased parameter estimates. A modified CML estimation method for MST designs proposed by Zwitser and Maris (2015; https://doi.org/10.1007/s11336-013-9369-6) finally provides asymptotically unbiased item parameter estimates. Steinfeld and Robitzsch (2021b; https://doi.org/10.31234/osf.io/ew27f) complemented this method to MST designs with probabilistic routing strategies. For both proposed modifications additional software solutions are required since design-specific information must be incorporated into the estimation process. An R package that has implemented both modifications is "tmt". In this article, first, the proposed solutions.... https://qcmb.psychopen.eu/index.php/qcmb/article/view/10087
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Estimating Item Parameters in Multistage Designs With the tmt Package in R ; volume:3 ; day:06 ; month:11 ; year:2023
Quantitative and computational methods in behavioral sciences ; 3 (06.11.2023)
- Creator
-
Steinfeld, Jan
Robitzsch, Alexander
- DOI
-
10.5964/qcmb.10087
- URN
-
urn:nbn:de:101:1-2023111014090440629299
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
14.08.2025, 10:47 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Steinfeld, Jan
- Robitzsch, Alexander