Journal article | Zeitschriftenartikel

Tree-based Machine Learning Methods for Survey Research

Predictive modeling methods from the field of machine learning have become a popular tool across various disciplines for exploring and analyzing diverse data. These methods often do not require specific prior knowledge about the functional form of the relationship under study and are able to adapt to complex non-linear and non-additive interrelations between the outcome and its predictors while focusing specifically on prediction performance. This modeling perspective is beginning to be adopted by survey researchers in order to adjust or improve various aspects of data collection and/or survey management. To facilitate this strand of research, this paper (1) provides an introduction to prominent tree-based machine learning methods, (2) reviews and discusses previous and (potential) prospective applications of tree-based supervised learning in survey research, and (3) exemplifies the usage of these techniques in the context of modeling and predicting nonresponse in panel surveys.

ISSN
1864-3361
Extent
Seite(n): 73-93
Language
Englisch
Notes
Status: Veröffentlichungsversion; begutachtet (peer reviewed)

Bibliographic citation
Survey Research Methods, 13(1)

Subject
Sozialwissenschaften, Soziologie
Erhebungstechniken und Analysetechniken der Sozialwissenschaften
Umfrageforschung
Methode
Modell
Datengewinnung
Datenqualität
Panel
Antwortverhalten

Event
Geistige Schöpfung
(who)
Kern, Christoph
Klausch, Thomas
Kreuter, Frauke
Event
Veröffentlichung
(where)
Deutschland
(when)
2019

DOI
Last update
21.06.2024, 4:28 PM CEST

Data provider

This object is provided by:
GESIS - Leibniz-Institut für Sozialwissenschaften. Bibliothek Köln. If you have any questions about the object, please contact the data provider.

Object type

  • Zeitschriftenartikel

Associated

  • Kern, Christoph
  • Klausch, Thomas
  • Kreuter, Frauke

Time of origin

  • 2019

Other Objects (12)