DeepDelta: predicting ADMET improvements of molecular derivatives with deep learning

Location
Deutsche Nationalbibliothek Frankfurt am Main
Extent
1 Online-Ressource.
Language
Englisch

Bibliographic citation
DeepDelta: predicting ADMET improvements of molecular derivatives with deep learning ; volume:15 ; number:1 ; day:27 ; month:10 ; year:2023 ; pages:1-13 ; date:12.2023
Journal of cheminformatics ; 15, Heft 1 (27.10.2023), 1-13, 12.2023

Creator
Fralish, Zachary
Chen, Ashley
Skaluba, Paul
Reker, Daniel
Contributor
SpringerLink (Online service)

DOI
10.1186/s13321-023-00769-x
URN
urn:nbn:de:101:1-2024011513431765726467
Rights
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Last update
15.08.2025, 7:27 AM CEST

Data provider

This object is provided by:
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.

Associated

  • Fralish, Zachary
  • Chen, Ashley
  • Skaluba, Paul
  • Reker, Daniel
  • SpringerLink (Online service)

Other Objects (12)