Artikel

Tighter reformulations using classical Dawson and Sankoff bounds for approximating two-stage chance-constrained programs

We extend and improve recent results given by Singh and Watson on using classical bounds on the union of sets in a chance-constrained optimization problem. Specifically, we revisit the so-called Dawson and Sankoff bound that provided one of the best approximations of a chance constraint in the previous analysis. Next, we show that our work is a generalization of the previous work, and in fact the inequality employed previously is a very relaxed approximation with assumptions that do not generally hold. Computational results demonstrate on average over a 43% improvement in the bounds. As a byproduct, we provide an exact reformulation of the floor function in optimization models.

Sprache
Englisch

Erschienen in
Journal: Optimization Letters ; ISSN: 1862-4480 ; Volume: 15 ; Year: 2020 ; Issue: 2 ; Pages: 327-336 ; Berlin, Heidelberg: Springer

Klassifikation
Mathematik
Thema
Chance-constrained optimization
Bonferroni inequalities
Union bounds
Stochastic optimization
Floor function
Linearization

Ereignis
Geistige Schöpfung
(wer)
Singh, Bismark
Ereignis
Veröffentlichung
(wer)
Springer
(wo)
Berlin, Heidelberg
(wann)
2020

DOI
doi:10.1007/s11590-020-01592-1
Letzte Aktualisierung
10.03.2025, 11:41 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Artikel

Beteiligte

  • Singh, Bismark
  • Springer

Entstanden

  • 2020

Ähnliche Objekte (12)