Influence of Nanopillar Arrays on Fibroblast Motility, Adhesion, and Migration Mechanisms
Abstract: Surfaces decorated with high aspect ratio nanostructures are a promising tool to study cellular processes and design novel devices to control cellular behavior. However, little is known about the dynamics of cellular phenomenon such as adhesion, spreading, and migration on such surfaces. In particular, how these are influenced by the surface properties. In this work, fibroblast behavior is investigated on regular arrays of 1 µm high polymer nanopillars with varying pillar to pillar distance. Embryonic mouse fibroblasts (NIH‐3T3) spread on all arrays, and on contact with the substrate engulf nanopillars independently of the array pitch. As the cells start to spread, different behavior is observed. On dense arrays which have a pitch equal or below 1 µm, cells are suspended on top of the nanopillars, making only sporadic contact with the glass support. Cells stay attached to the glass support and fully engulf nanopillars during spreading and migration on the sparse arrays which have a pitch of 2 µm and above. These alternate states have a profound effect on cell migration rates. Dynamic F‐actin puncta colocalize with nanopillars during cell spreading and migration. Strong membrane association with engulfed nanopillars might explain the reduced migration rates on sparse arrays.
- Location
- 
                Deutsche Nationalbibliothek Frankfurt am Main
 
- Extent
- 
                Online-Ressource
 
- Language
- 
                Englisch
 
- Bibliographic citation
- 
                Influence of Nanopillar Arrays on Fibroblast Motility, Adhesion, and Migration Mechanisms ; volume:15 ; number:43 ; year:2019 ; extent:12
 Small ; 15, Heft 43 (2019) (gesamt 12)
 
- Creator
- 
                Beckwith, Kai S.
 Ullmann, Sindre
 Vinje, Jakob
 Sikorski, Pawel
 
- DOI
- 
                
                    
                        10.1002/smll.201902514
- URN
- 
                
                    
                        urn:nbn:de:101:1-2022072906355014152957
- Rights
- 
                
                    
                        Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
- 
                
                    
                        15.08.2025, 7:24 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Beckwith, Kai S.
- Ullmann, Sindre
- Vinje, Jakob
- Sikorski, Pawel
 
        
    