Arbeitspapier
Optimal asset allocation under quadratic loss aversion
We study the asset allocation of a quadratic loss-averse (QLA) investor and derive conditions under which the QLA problem is equivalent to the mean-variance (MV) and conditional value-at-risk (CVaR) problems. Then we solve analytically the two-asset problem of the QLA investor for a risk-free and a risky asset. We find that the optimal QLA investment in the risky asset is finite, strictly positive and is minimal with respect to the reference point for a value strictly larger than the risk-free rate. Finally, we implement the trading strategy of a QLA investor who reallocates her portfolio on a monthly basis using 13 EU and US assets. We find that QLA portfolios (mostly) outperform MV and CVaR portfolios and that incorporating a conservative dynamic update of the QLA parameters improves the performance of QLA portfolios. Compared with linear loss-averse portfolios, QLA portfolios display significantly less risk but they also yield lower returns.
- Sprache
-
Englisch
- Erschienen in
-
Series: Reihe Ökonomie / Economics Series ; No. 291
- Klassifikation
-
Wirtschaft
Criteria for Decision-Making under Risk and Uncertainty
Portfolio Choice; Investment Decisions
International Financial Markets
Investment Banking; Venture Capital; Brokerage; Ratings and Ratings Agencies
- Thema
-
quadratic loss aversion
prospect theory
portfolio optimization
MV and CVaR portfolios
investment strategy
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Fortin, Ines
Hlouskova, Jaroslava
- Ereignis
-
Veröffentlichung
- (wer)
-
Institute for Advanced Studies (IHS)
- (wo)
-
Vienna
- (wann)
-
2012
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:43 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Fortin, Ines
- Hlouskova, Jaroslava
- Institute for Advanced Studies (IHS)
Entstanden
- 2012