Artikel

Modeling high frequency data with long memory and structural change: A-HYEGARCH model

In this paper, we propose an Adaptive Hyperbolic EGARCH (A-HYEGARCH) model to estimate the long memory of high frequency time series with potential structural breaks. Based on the original HYGARCH model, we use the logarithm transformation to ensure the positivity of conditional variance. The structural change is further allowed via a flexible time-dependent intercept in the conditional variance equation. To demonstrate its effectiveness, we perform a range of Monte Carlo studies considering various data generating processes with and without structural changes. Empirical testing of the A-HYEGARCH model is also conducted using high frequency returns of S&P 500, FTSE 100, ASX 200 and Nikkei 225. Our simulation and empirical evidence demonstrate that the proposed A-HYEGARCH model outperforms various competing specifications and can effectively control for structural breaks. Therefore, our model may provide more reliable estimates of long memory and could be a widely useful tool for modelling financial volatility in other contexts.

Language
Englisch

Bibliographic citation
Journal: Risks ; ISSN: 2227-9091 ; Volume: 6 ; Year: 2018 ; Issue: 2 ; Pages: 1-28 ; Basel: MDPI

Classification
Wirtschaft
Subject
long memory
structural change
GARCH
A-HYEGARCH

Event
Geistige Schöpfung
(who)
Shi, Yanlin
Yang, Yang
Event
Veröffentlichung
(who)
MDPI
(where)
Basel
(when)
2018

DOI
doi:10.3390/risks6020026
Handle
Last update
10.03.2025, 11:45 AM CET

Data provider

This object is provided by:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. If you have any questions about the object, please contact the data provider.

Object type

  • Artikel

Associated

  • Shi, Yanlin
  • Yang, Yang
  • MDPI

Time of origin

  • 2018

Other Objects (12)