Implementing Markovian models for extendible Marshall–Olkin distributions
Abstract: We derive a novel stochastic representation of exchangeable Marshall–Olkin distributions based on their death-counting processes. We show that these processes are Markov. Furthermore, we provide a numerically stable approximation of their infinitesimal generator matrices in the extendible case. This approach uses integral representations of Bernstein functions to calculate the generator’s first row, and then uses a recursion to calculate the remaining rows. Combining the Markov representation with the numerically stable approximation of corresponding generators allows us to sample extendible Marshall–Olkin distributions with a flexible simulation algorithm derived from known Markov sampling strategies. Finally, we benchmark an implementation of this Markov-based simulation algorithm against alternative simulation algorithms based on the Lévy frailty model, the Arnold model, and the exogenous shock model.
- Location
-
Deutsche Nationalbibliothek Frankfurt am Main
- Extent
-
Online-Ressource
- Language
-
Englisch
- Bibliographic citation
-
Implementing Markovian models for extendible Marshall–Olkin distributions ; volume:10 ; number:1 ; year:2022 ; pages:308-343 ; extent:36
Dependence modeling ; 10, Heft 1 (2022), 308-343 (gesamt 36)
- Creator
-
Sloot, Henrik
- DOI
-
10.1515/demo-2022-0151
- URN
-
urn:nbn:de:101:1-2022121713055229706409
- Rights
-
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
- Last update
-
15.08.2025, 7:39 AM CEST
Data provider
Deutsche Nationalbibliothek. If you have any questions about the object, please contact the data provider.
Associated
- Sloot, Henrik