A Top-Down Hierarchical Approach for Automatic Indoor Segmentation and Connectivity Detection

Abstract. Data organization is essential for effective analysis of the spatial relationships between rooms and walls. Segmentation in successive stages plays a crucial role in this process since dividing the data set into smaller sets makes its analysis easier. The proposed approach starts with the segmentation of buildings by storeys using a three-dimensional point cloud and is carried out by detecting peaks in histogram of Z frequency. Subsequently, each storey is segmented into rooms using three-dimensional mathematical morphology techniques, which allows the delimitation of the interior spaces. The third and final step consists of identifying elements within each room, such as doors, ceiling, floor, and walls. During this process, connectivity and adjacency of building elements are studied to automatically derive topological graphs. This methodology results in a deeper and more systematic analysis of three-dimensional spaces, providing a solid basis for the subsequent interpretation and manipulation of the data obtained. The proposed method has been tested in two real cases and the results are shown respectively.

Standort
Deutsche Nationalbibliothek Frankfurt am Main
Umfang
Online-Ressource
Sprache
Englisch

Erschienen in
A Top-Down Hierarchical Approach for Automatic Indoor Segmentation and Connectivity Detection ; volume:X-4/W5-2024 ; year:2024 ; pages:289-296 ; extent:8
ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences ; X-4/W5-2024 (2024), 289-296 (gesamt 8)

Urheber
Túñez-Alcalde, Rosa M.
Albadri, Muataz S. A.
González-Cabaleiro, Patricia
Fernández, Antonio
Díaz-Vilariño, Lucía

DOI
10.5194/isprs-annals-X-4-W5-2024-289-2024
URN
urn:nbn:de:101:1-2408061057587.882883137995
Rechteinformation
Open Access; Der Zugriff auf das Objekt ist unbeschränkt möglich.
Letzte Aktualisierung
14.08.2025, 11:01 MESZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
Deutsche Nationalbibliothek. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Beteiligte

  • Túñez-Alcalde, Rosa M.
  • Albadri, Muataz S. A.
  • González-Cabaleiro, Patricia
  • Fernández, Antonio
  • Díaz-Vilariño, Lucía

Ähnliche Objekte (12)