Arbeitspapier

Testing missing at random using instrumental variables

This paper proposes a test for missing at random (MAR). The MAR assumption is shown to be testable given instrumental variables which are independent of response given potential outcomes. A nonparametric testing procedure based on integrated squared distance is proposed. The statistic's asymptotic distribu- tion under the MAR hypothesis is derived. We demonstrate that our results can be easily extended to a test of missing completely at random (MCAR) and miss- ing completely at random conditional on covariates X (MCAR(X)). A Monte Carlo study examines finite sample performance of our test statistic. An empirical illustration concerns pocket prescription drug spending with missing values; we reject MCAR but fail to reject MAR.

Sprache
Englisch

Erschienen in
Series: SFB 649 Discussion Paper ; No. 2015-016

Klassifikation
Wirtschaft
Hypothesis Testing: General
Semiparametric and Nonparametric Methods: General
Thema
incomplete data
missing-data mechanism
selection model
nonparametric hypothesis testing
consistent testing
instrumental variable
series estimation

Ereignis
Geistige Schöpfung
(wer)
Breunig, Christoph
Ereignis
Veröffentlichung
(wer)
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
(wo)
Berlin
(wann)
2015

Handle
Letzte Aktualisierung
10.03.2025, 11:46 MEZ

Datenpartner

Dieses Objekt wird bereitgestellt von:
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.

Objekttyp

  • Arbeitspapier

Beteiligte

  • Breunig, Christoph
  • Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk

Entstanden

  • 2015

Ähnliche Objekte (12)