Arbeitspapier
Testing missing at random using instrumental variables
This paper proposes a test for missing at random (MAR). The MAR assumption is shown to be testable given instrumental variables which are independent of response given potential outcomes. A nonparametric testing procedure based on integrated squared distance is proposed. The statistic's asymptotic distribu- tion under the MAR hypothesis is derived. We demonstrate that our results can be easily extended to a test of missing completely at random (MCAR) and miss- ing completely at random conditional on covariates X (MCAR(X)). A Monte Carlo study examines finite sample performance of our test statistic. An empirical illustration concerns pocket prescription drug spending with missing values; we reject MCAR but fail to reject MAR.
- Sprache
-
Englisch
- Erschienen in
-
Series: SFB 649 Discussion Paper ; No. 2015-016
- Klassifikation
-
Wirtschaft
Hypothesis Testing: General
Semiparametric and Nonparametric Methods: General
- Thema
-
incomplete data
missing-data mechanism
selection model
nonparametric hypothesis testing
consistent testing
instrumental variable
series estimation
- Ereignis
-
Geistige Schöpfung
- (wer)
-
Breunig, Christoph
- Ereignis
-
Veröffentlichung
- (wer)
-
Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
- (wo)
-
Berlin
- (wann)
-
2015
- Handle
- Letzte Aktualisierung
-
10.03.2025, 11:46 MEZ
Datenpartner
ZBW - Deutsche Zentralbibliothek für Wirtschaftswissenschaften - Leibniz-Informationszentrum Wirtschaft. Bei Fragen zum Objekt wenden Sie sich bitte an den Datenpartner.
Objekttyp
- Arbeitspapier
Beteiligte
- Breunig, Christoph
- Humboldt University of Berlin, Collaborative Research Center 649 - Economic Risk
Entstanden
- 2015